本文还在持续写作中…
关键词:物理吸附、化学吸附、活化吸附、非活化吸附、CO的Blyholder模型、d带中心理论(d-band center theory)
传统电化学主要关注溶剂内变化,而现代电化学将关注重点转移到了电化学界面,即电极与溶液界面。而电荷(电子/质子)转移是电化学界面过程所关注的重要过程。
在物理中可以引用Green函数求解下列形式的线性微分方程
Greenhouse gas emission mostly accounts for global warming effect, hence the urgency to realize $\text{CO}_{2}$ removal efficiently and harmlessly to the environment. Base on all of these requirements, utilization of abundant solar energy to achieve $\text{CO}_{2}$ reduction seems the be the best choice. In this review, mechanisms of $\text{CO}_{2}$ photoreduction is briefly introduced, including electrochemical potential analysis and chemical reaction mechanism. Efficiency measurements in this filed are summarized, mainly divided into two groups: catalyst-based measurement and light-based measurement. Applications of $\text{TiO}_{2}$ on $\text{CO}_{2}$ reduction will follow. Subsequently, the modifications on $\text{TiO}_{2}$ specifically for its efficiency and selectivity are discussed in details.
在经典物理中,Green函数主要被当做一种求解线性微分方程数学物理方法来使用。在量子物理中,其定义稍显“不同”:
当然其本质还是求解线性微分方程,关于它们之间的联系,详见博客文章:量子物理中Green函数与其广义定义的联系。在这里,我们先看看Green函数在量子物理中是如何被定义的。
快到年底了…其实关键是快到期末了。摸着羊不得不抓紧时间复习,仿佛多看几次就能记住似的(的确比不看的强)。这段时间,摸着羊很久都没有更新博客了,一是因为课程/科研任务都较紧张,二是因为,个人希望沉淀出更有质量的东西再写。